
  

Eclipse, Python, Git, and Vim
Oh My!

Jesse Keating
PRESENTED BY:

Senior Software Engineer, Red Hat, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.



  

Today's Topics

· What is Eclipse?

· Developing Python in Eclipse

· Interacting with git in Eclipse

· Using Vim with Eclipse



  

What is Eclipse?



  

Eclipse is...

· not a cheesy vampire book

· not a Japanese sports car

· not a pack of gum

· an Integrated Development Environment

· (eclipse.org is much bigger than just the IDE)



  

A quick tour



  

Features

· Editor

· Multiple Perspectives

· Execution Testing

· Debugging

· Team (source control) Interaction

· Plugins to add lots more!



  

Editor

· Multiple tabs

· Language colors

· Code Completion

· Whitespace management

· (near) Real Time error checking

· Code folding/collapsing

· Spell checking

· Much more



  

Pydev Perspective Views

· Navigation and information

· Project explorer

· Source file outline

· Errors

· Console

· History

· Can be on their own or stacked

· Can minimize or maximize



  

Execution Testing

· Multiple configurations

· Custom app / interpreter arguments

· Console output

· Support for code coverage

· Support for Google App Run

· More with plugins



  

Execution Testing



  

Debug Perspective

· Set breakpoints

· Inspect stack data

· Step into, over, return

· Manually pause, resume

· Multiple configurations (linked with run)

· More with plugins



  

Debug Perspective



  

Team Controls

· Interact with source control

· commit

· push

· merge

· tag

· More...

· Support for a variety of SCMs (with plugins)



  

Team Controls



  

Developing Python



  

Create a new Project

· Create a pydev project

· Create a new python package within the 
project

· Create a new module within the package

· Create a the script



  

Sling some Code



  

Setup a run

· Make sure script is the active tab

· “Console” view tab will automatically focus 
when output happens



  

Setup a debug

· Breakpoints are vitally important

· Cannot be on a blank line (lost lots of time to this 
one...)

· Do not have to save the file after adding a break 
point

· Debug perspective will automatically launch as 
soon as a breakpoint is encountered

· Can use console to evaluate statements



  

Code Formatting



  

Diffing

· Can diff against local history

· Could diff against previous SCM commits

· Can revert all or parts



  

Refactoring

· Rename items

· Create new methods from existing code

· Inline / extract a variable



  

Interactive Console

· Use a fresh python prompt

· Send selected code to the console

· Get execfile sent to console to continue playing 
with symbols



  

Code Testing

· Support for code unittests

· Pydev test runner

· Nose

· py.test

· Support for code coverage

· Support for pylint



  

Interacting with git



  

git Interaction

· Can create new repo from existing project

· Can create new project from existing repo

· Can link existing project to existing repo



  

Create a git repo from project

· Share Project

· Choose git

· Create a new repository

· Profit!



  

Commit files to git

· No files exist in the repo by default, they have 
to be added/committed



  

Using git to aid development

· Create branches for topic work

· Diffing / committing

· Creating patches

· Resetting work

· History and repository viewing

· Merging

· Tagging



  

Using Vim



  

vrapper

· Wraps the current editor with vim like 
keybindings, rather than embedding vim itself

· Easy to turn on/off without restarting eclipse

· Still has command/insert modes

· Not all commands or key sequences work 
though, and a few bugs.



  

Some quick vrapper features

· Navigation (arrows or k,j,h,l)

· Searching (/,?,n,N)

· Change {word,line,etc} (c{w,$,G,gg})

· Undo / redo (u,R)

· Repeat (.)

· Yank / paste (y{...},{p,P})

· Visual mode (v)

· Command mode (:)



  

Some quick vrapper features

· Config file (.vrapperrc)

· Macros (q[a-z])

· Marks (m[a-z])



  

What's missing?

· Search and replace

· Regex searching

· Vim plugins



  

Summary

· Eclipse is a useful IDE

· Developing python in Eclipse is awesome

· Using git within Eclipse is handy

· Using vim within Eclipse is a godsend!



  

Questions?

jkeating@redhat.com
CONTACT:

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.



  

 

  

Eclipse, Python, Git, and Vim
Oh My!

Jesse Keating
PRESENTED BY:

Senior Software Engineer, Red Hat, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Who are you and what am I?



  

 

  

Today's Topics

· What is Eclipse?

· Developing Python in Eclipse

· Interacting with git in Eclipse

· Using Vim with Eclipse

We have 2 hours, might be shorter.

Can have questions during or at the end.

This does assume some working knowledge of python, 
git and vim.  Knowledge of Eclipse is optional.  
Depending on time and pace I can dive further into 
topics to keep people from getting lost.



  

 

  

What is Eclipse?

Does anybody not know what Eclipse is?



  

 

  

Eclipse is...

· not a cheesy vampire book

· not a Japanese sports car

· not a pack of gum

· an Integrated Development Environment

· (eclipse.org is much bigger than just the IDE)

Kitchen Sink approach.



  

 

  

A quick tour

A few panes to look at

Project / file browser on left

Editor in the middle

Outline on right

Various utilities on the bottom

Multiple perspectives



  

 

  

Features

· Editor

· Multiple Perspectives

· Execution Testing

· Debugging

· Team (source control) Interaction

· Plugins to add lots more!

Perspectives define what is visible in the workbench, 
presets for editing, debugging, etc..



  

 

  

Editor

· Multiple tabs

· Language colors

· Code Completion

· Whitespace management

· (near) Real Time error checking

· Code folding/collapsing

· Spell checking

· Much more

Editor is the main interface where you'll do most of 
the typing

List the editor main features



  

 

  

Pydev Perspective Views

· Navigation and information

· Project explorer

· Source file outline

· Errors

· Console

· History

· Can be on their own or stacked

· Can minimize or maximize

Views surround the editor and offer navigation and 
information

Perspectives are highly customizable



  

 

  

Execution Testing

· Multiple configurations

· Custom app / interpreter arguments

· Console output

· Support for code coverage

· Support for Google App Run

· More with plugins



  

 

  

Execution Testing



  

 

  

Debug Perspective

· Set breakpoints

· Inspect stack data

· Step into, over, return

· Manually pause, resume

· Multiple configurations (linked with run)

· More with plugins

Different views more tailored for debugging



  

 

  

Debug Perspective

Thread data and flow manipulation

Variable data

Smaller source window and overview, now with 
highlights to show current execution point

Console



  

 

  

Team Controls

· Interact with source control

· commit

· push

· merge

· tag

· More...

· Support for a variety of SCMs (with plugins)

Team context menu will change depending on what 
SCM (if any) is in use



  

 

  

Team Controls



  

 

  

Developing Python

Lets move on to using Eclipse for writing some python 
code

Python support comes from the pydev project, 
packaged as eclipse-pydev



  

 

  

Create a new Project

· Create a pydev project

· Create a new python package within the 
project

· Create a new module within the package

· Create a the script

Pydev is the plugin to use for new python projects

When creating new packages, dot notation can be 
used to create submodules

When creating new modules, right clicking can help 
where the module winds up

When creating new modules, templates can be used



  

 

  

Sling some Code

Create the lfnw project

Create a package output.console
Create a module within console named pprint

Edit pprint to create a Print() class and a doprint() 
function within that prints a message

Create a module at top level using main template
  Discuss how templates can be used and customized



  

 

  

Setup a run

· Make sure script is the active tab

· “Console” view tab will automatically focus 
when output happens

Running this is easy, there are no options.  Could 
define arguments to pass.



  

 

  

Setup a debug

· Breakpoints are vitally important

· Cannot be on a blank line (lost lots of time to this 
one...)

· Do not have to save the file after adding a break 
point

· Debug perspective will automatically launch as 
soon as a breakpoint is encountered

· Can use console to evaluate statements

Insert a break point somewhere in the Print class



  

 

  

Code Formatting

You can define what code formatting rules you'd like 
applied.

You can have it autoformat before saving, or do it 
manually.

Show running the code formatter on a file that has 
too many spaces, then diff.



  

 

  

Diffing

· Can diff against local history

· Could diff against previous SCM commits

· Can revert all or parts

Show diffing in the UI



  

 

  

Refactoring

· Rename items

· Create new methods from existing code

· Inline / extract a variable

Rename an item and it will update all the references 
across the project

Highlight a set of code and turn it into a new method

Collapse verbose code into more streamlined sets or 
vice versa

Show some examples



  

 

  

Interactive Console

· Use a fresh python prompt

· Send selected code to the console

· Get execfile sent to console to continue playing 
with symbols

An interactive console can be used to play around 
with python, with some selected code sent to the 
console, or with an entire file sent and executed to 
allow you to play with the symbols and experiment.

Contents of the console can later be saved to a new 
file.



  

 

  

Code Testing

· Support for code unittests

· Pydev test runner

· Nose

· py.test

· Support for code coverage

· Support for pylint

Eclipse can run your unittests for you using your 
choice of a few test runners.

This can be combined with code coverage information 
using the 'coverage' module. (show coverage demo)

Eclipse can also pylint  your files as you edit them.

Add a test subpackage to output and create a subclass 
of unittest.TestCase (letting autoimport do its thing).  
Create a setUp class to create the module.  Start 
adding test_foo for each function, running as 
coverage, checking the coverage each time.  Don't 
forget if __name__ == '__main__'



  

 

  

Interacting with git

Now that we have some code in a project, lets start 
playing with source control to keep track of the 
changes we'll make.

Git interaction comes from the 'egit' plugin, which is 
packaged as 'eclipse-egit' in Fedora.



  

 

  

git Interaction

· Can create new repo from existing project

· Can create new project from existing repo

· Can link existing project to existing repo

Show diffing in the UI



  

 

  

Create a git repo from project

· Share Project

· Choose git

· Create a new repository

· Profit!

Use the team menu to share the project, which will 
allow you to create a new git repository of the 
project.

Now you can use the team menu to interact with git, 
and the project browser will have subtle graphical 
hints as to repository status



  

 

  

Commit files to git

· No files exist in the repo by default, they have 
to be added/committed

Show commit before add, then add then show commit 
again.



  

 

  

Using git to aid development

· Create branches for topic work

· Diffing / committing

· Creating patches

· Resetting work

· History and repository viewing

· Merging

· Tagging

Use team menu to create and check out a new branch

In this branch add a new class method, show diffing 
before saving.

Commit the change and again show how you can look 
at the diff while in the commit screen

Create a patch from the commit in history view.  Show 
difference between git exported and not.  Still more 
useful to use git format-patch et al from the CLI

Add a change and then throw it away with reset, or 
with history viewing.

Checkout and add a change on master, then 
merge/rebase on branch (repos view), then merge 
on master



  

 

  

Using Vim

What good is a graphical editor if you're constantly 
fighting the keybindings?

Vim is awesome, would love to use it everywhere.  
Vim keybindings can be added to eclipse in a few 
different ways.  The “best” “free” way I've found is 
with vrapper, packaged as eclipse-vrapper in Fedora.



  

 

  

vrapper

· Wraps the current editor with vim like 
keybindings, rather than embedding vim itself

· Easy to turn on/off without restarting eclipse

· Still has command/insert modes

· Not all commands or key sequences work 
though, and a few bugs.



  

 

  

Some quick vrapper features

· Navigation (arrows or k,j,h,l)

· Searching (/,?,n,N)

· Change {word,line,etc} (c{w,$,G,gg})

· Undo / redo (u,R)

· Repeat (.)

· Yank / paste (y{...},{p,P})

· Visual mode (v)

· Command mode (:)

Move around, search around, change stuff, undo/redo 
the change, repeat an action, yank and paste (across 
tabs), show visual for yanking

Show some commands



  

 

  

Some quick vrapper features

· Config file (.vrapperrc)

· Macros (q[a-z])

· Marks (m[a-z])

There is a config file, it supports macros and marks for 
jumping



  

 

  

What's missing?

· Search and replace

· Regex searching

· Vim plugins



  

 

  

Summary

· Eclipse is a useful IDE

· Developing python in Eclipse is awesome

· Using git within Eclipse is handy

· Using vim within Eclipse is a godsend!



  

 

  

Questions?

jkeating@redhat.com
CONTACT:

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.


